91 research outputs found

    If I Hear You Correctly: Building and Evaluating Interview Chatbots with Active Listening Skills

    Full text link
    Interview chatbots engage users in a text-based conversation to draw out their views and opinions. It is, however, challenging to build effective interview chatbots that can handle user free-text responses to open-ended questions and deliver engaging user experience. As the first step, we are investigating the feasibility and effectiveness of using publicly available, practical AI technologies to build effective interview chatbots. To demonstrate feasibility, we built a prototype scoped to enable interview chatbots with a subset of active listening skills - the abilities to comprehend a user's input and respond properly. To evaluate the effectiveness of our prototype, we compared the performance of interview chatbots with or without active listening skills on four common interview topics in a live evaluation with 206 users. Our work presents practical design implications for building effective interview chatbots, hybrid chatbot platforms, and empathetic chatbots beyond interview tasks.Comment: Working draft. To appear in the ACM CHI Conference on Human Factors in Computing Systems (CHI 2020

    Construction of an immunogenic cell death-based risk score prognosis model in breast cancer

    Get PDF
    Immunogenic cell death (ICD) is a form of regulated cell death that elicits immune response. Common inducers of ICD include cancer chemotherapy and radiation therapy. A better understanding of ICD might contribute to modify the current regimens of anti-cancer therapy, especially immunotherapy. This study aimed to identify ICD-related prognostic gene signatures in breast cancer (BC). An ICD-based gene prognostic signature was developed using Lasso-cox regression and Kaplan-Meier survival analysis based on datasets acquired from the Cancer Genome Atlas and Gene Expression Omnibus. A nomogram model was developed to predict the prognosis of BC patients. Gene Set Enrichment Analysis (GESA) and Gene Set Variation Analysis (GSVA) were used to explore the differentially expressed signaling pathways in high and low-risk groups. CIBERSORT and ESTIMATE algorithms were performed to investigate the difference of immune status in tumor microenvironment of different risk groups. Six genes (CALR, CLEC9A, BAX, TLR4, CXCR3, and PIK3CA) were selected for construction and validation of the prognosis model of BC based on public data. GSEA and GSVA analysis found that immune-related gene sets were enriched in low-risk group. Moreover, immune cell infiltration analysis showed that the immune features of the high-risk group were characterized by higher infiltration of tumor-associated macrophages and a lower proportion of CD8+ T cells, suggesting an immune evasive tumor microenvironment. We constructed and validated an ICD-based gene signature for predicting prognosis of breast cancer patients. Our model provides a tool with good discrimination and calibration abilities to predict the prognosis of BC, especially triple-negative breast cancer (TNBC)

    Nutritionally Enhanced Staple Food Crops

    Get PDF
    Crop biofortification is a sustainable and cost-effective strategy to address malnutrition in developing countries. This review synthesizes the progress toward developing seed micronutrient-dense cereals and legumes cultivars by exploiting natural genetic variation using conventional breeding and/or transgenic technology, and discusses the associated issues to strengthen crop biofortification research and development. Some major QTL for seed iron and zinc, seed phosphorus, and seed phytate in common bean, rice,J;md wheat have been mapped. An iron reductase QTL associated with seed-iron ~QTL is found in common bean where the genes coding for candidate enzymes involved in phytic acid synthesis have also been mapped. Candidate genes for Ipa co segregate with mutant phenotypes identified in rice and soybean. The Gpe-B1 locus in wild emmer wheat accelerates senescence and increases nutrient remobilization from leaves to developing seeds, and another gene named TtNAM-B1 affecting these traits has been cloned. Seed iron-dense common bean and rice in Latin America; seed iron-dense common bean in eastern and southern Africa;....

    A Review of Data-driven Approaches for Malicious Website Detection

    Full text link
    The detection of malicious websites has become a critical issue in cybersecurity. Therefore, this paper offers a comprehensive review of data-driven methods for detecting malicious websites. Traditional approaches and their limitations are discussed, followed by an overview of data-driven approaches. The paper establishes the data-feature-model-extension pipeline and the latest research developments of data-driven approaches, including data preprocessing, feature extraction, model construction and technology extension. Specifically, this paper compares methods using deep learning models proposed in recent years. Furthermore, the paper follows the data-feature-model-extension pipeline to discuss the challenges together with some future directions of data-driven methods in malicious website detection.Comment: 8 page

    Sparsity-Based DOA Estimation with Gain and Phase Error Calibration of Generalized Nested Array

    No full text
    Sparse arrays, which can localize multiple sources with less physical sensors, have attracted more attention since they were proposed. However, for optimal performance of sparse arrays, it is usually assumed that the circumstances are ideal. But in practice, the performance of sparse arrays will suffer from the model errors like mutual coupling, gain and phase error, and sensor’s location error, which causes severe performance degradation or even failure of the direction of arrival (DOA) estimation algorithms. In this study, we follow with interest and propose a covariance-based sparse representation method in the presence of gain and phase errors, where a generalized nested array is employed. The proposed strategy not only enhances the degrees of freedom (DOFs) to deal with more sources but also obtains more accurate DOA estimations despite gain and phase errors. The Cramer–Rao bound (CRB) derivation is analyzed to demonstrate the robustness of the method. Finally, numerical examples illustrate the effectiveness of the proposed method from DOA estimation

    High-Precision Mutual Coupling Coefficient Estimation for Adaptive Beamforming

    No full text
    Here, a high-precision mutual coupling coefficient estimation method is proposed that is more suitable for adaptive beamforming than traditional algorithms. According to the relationship between the designed transition matrix and the signal, the proposed algorithm selects the transition matrix corresponding to the high-power signal. The high-precision estimation of the mutual coupling coefficient is obtained by using the selected transition matrix estimation, which yields relatively good estimation accuracy for the mutual coupling coefficient when the desired signal-to-noise ratio (SNR) is low and relatively robust adaptive beamforming with unknown mutual coupling. Simulation results demonstrate the validity of the proposed method

    Multi-Frequency Based Direction-of-Arrival Estimation for 2q-Level Nested Radar & Sonar Arrays

    No full text
    Direction finding is a hot research area in radar and sonar systems. In the case of q ≥ 2, the 2qth-order cumulant based direction of arrival (DOA) estimation algorithm for the 2q-level nested array can achieve high resolution performance. A virtual 2qth-order difference co-array, which contains O(N2q) virtual sensors in the form of a uniform linear array (ULA), is yielded and the Gaussian noise is eliminated. However, some virtual elements are separated by the holes among the 2qth-order difference co-array and cannot be fully used. Even though the application of the multi-frequency method for minimum frequency separation (MFMFS) can fill the holes with low computation complexity, it requires that the number of frequencies must increase with the number of holes. In addition, the signal spectra have to be proportional for all frequencies, which is hard to satisfy when the number of holes is large. Aiming at this, we further propose a multi-frequency method for a minimum number of frequencies (MFMNF) and discuss the best frequency choice under two specific situations. Simulation results verify that, compared with the MFMFS method, the proposed MFMNF method can use only one frequency to fill all the holes while achieving a longer virtual array and the DOA estimation performance is, therefore, improved

    Increasing Utilization of Redundant Virtual Array for DOA Estimation Based on Coprime Array

    No full text
    In this paper, we initiated a method to estimate the direction of arrival (DOA) of far-field, narrowband, and incoherent targets using coprime array. First, we proposed a coprime array structure and analysed the distribution of difference coarray (DCA). The degrees of freedom (DOF) of the proposed coprime array became clearer by referring to the DCA conception. However, previous algorithm only uses the continuous virtual array, which causes the virtual array elements in the repeated position being abandoned. Therefore, the paper analyses the distribution of virtual array based on DCA conception and averages the receiving signal on these redundant virtual array elements to increase the utilization of receiving data. As a result, the algorithm has high precision in parameter estimation. Simulation results have shown the superiority of the proposed algorithm
    • …
    corecore